首页> 外文OA文献 >Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast
【2h】

Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast

机译:基于图集的分割技术结合了观察者之间对整个乳房的描述不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate, efficient auto-segmentation methods are essential for the clinical efficacy of adaptive radiotherapy delivered with highly conformal techniques. Current atlas based auto-segmentation techniques are adequate in this respect, however fail to account for inter-observer variation. An atlas-based segmentation method that incorporates inter-observer variation is proposed. This method is validated for a whole breast radiotherapy cohort containing 28 CT datasets with CTVs delineated by eight observers. To optimise atlas accuracy, the cohort was divided into categories by mean body mass index and laterality, with atlas\u27 generated for each in a leave-one-out approach. Observer CTVs were merged and thresholded to generate an auto-segmentation model representing both inter-observer and inter-patient differences. For each category, the atlas was registered to the left-out dataset to enable propagation of the auto-segmentation from atlas space. Auto-segmentation time was recorded. The segmentation was compared to the gold-standard contour using the dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Comparison with the smallest and largest CTV was also made. This atlas-based auto-segmentation method incorporating inter-observer variation was shown to be efficient (\u3c4min) and accurate for whole breast radiotherapy, with good agreement (DSC\u3e0.7, MASD \u3c9.3mm) between the auto-segmented contours and CTV volumes.
机译:准确,高效的自动分割方法对于采用高度保形技术进行的适应性放射治疗的临床疗效至关重要。在这方面,当前基于图集的自动分段技术是足够的,但是不能解决观察者之间的差异。提出了一种基于图集的结合观察者间差异的分割方法。该方法已针对包含28个CT数据集和8个观察者描绘的CTV的整个乳腺癌放射治疗队列进行了验证。为了优化地图集的准确性,该队列按平均体重指数和侧身度划分为几类,并通过留一法的方法为每个人生成地图集。合并观察者CTV并对其设置阈值以生成代表观察者之间和患者之间差异的自动细分模型。对于每个类别,将地图集注册到遗漏的数据集,以实现从地图集空间传播自动细分。记录了自动分段时间。使用骰子相似系数(DSC)和平均绝对表面距离(MASD)将分割与黄金标准轮廓进行比较。还与最小和最大的CTV进行了比较。这种基于观察者差异的基于图集的自动分割方法被证明是有效的(\ u3c4min)并且对于整个乳腺放疗是准确的,并且自动分割之间的良好一致性(DSC \ u3e0.7,MASD \ u3c9.3mm)轮廓和CTV量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号